ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Мультиметры Keithley DMM6500, Keithley DAQ6510

Назначение средства измерений

Мультиметры Keithley DMM6500, Keithley DAQ6510 (далее – мультиметры) предназначены для измерения напряжения и силы постоянного и переменного тока, электрического сопротивления постоянному току, электрической емкости, частоты и периода.

Описание средства измерений

Принцип действия основан на преобразовании аналогового входного сигнала в цифровой код посредством аналого-цифрового преобразователя (АЦП) с применением масштабирующих усилителей, потенциометрических схем, прецизионных резисторов и опорного генератора частоты. Для измерения мгновенных значений напряжения и силы тока используется высокоскоростной АЦП с частотой дискретизации 1 МГц, при этом сигнал может быть представлен в виде осциллограммы. Мультиметры оснащены графическим сенсорным дисплеем. Максимальное разрешение индикации составляет $6\frac{1}{2}$ разрядов.

Связь с компьютером и другими внешними устройствами осуществляется с помощью интерфейсов USB и LAN, разъемы которых установлены на задней панели. Опционально (при установке соответствующей коммуникационной платы) могут быть использованы интерфейсы RS-232, GPIB, TSP-Link.

Входные разъемы модели DMM6500 расположены на передней и задней панелях, модели DAQ6510 — только на передней панели. Для многоканальных измерений в модели DMM6500 может быть использован встраиваемый модуль мультиплексора, в модели DAQ6510 предусмотрена установка модулей коммутации различного типа (два слота на задней панели).

Вид передней панели мультиметров с указанием места нанесения знака утверждения типа и знака поверки показан на рисунке 1. Вид задней панели и схема пломбировки от несанкционированного доступа показаны на рисунках 2, 3.

Рисунок 2 – Вид задней панели DMM6500

Программное обеспечение

Программное обеспечение, установленное на внутренний контроллер, выполняет функции управления режимами работы, выбора диапазонов, задания параметров и функций представления и обработки измерительной информации.

Рисунок 3 – Вид задней панели DAQ6510

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений «низкий» по Р 50.2.077-2014.

Идентификационные данные программного обеспечения приведены в таблице 1.

Таблица 1 – Идентификационные данные программного обеспечения

1 worman 1 1 man man man and man					
Идентификационные данные (признаки)	Значение				
Идентификационное наименование	DMM6500-FRP	DAQ6510-FRP			
Номер версии (идентификационный номер)	1.0.01 и выше	1.0.01 и выше			

Метрологические и технические характеристики

Метрологические характеристики представлены в таблицах 2 – 10, технические характеристики приведены в таблице 11.

Таблица 2 – Измерение постоянного напряжения

Верхний предел диапазона 1)	Входное сопротивление	Пределы допускаемой абсолютной погрешности 2,3)	Температурный коэффициент (/°C), не более ²⁾
100 мВ	>10 ГОм	$\pm (3.10^{-5} \cdot \text{U} + 3.5.10^{-5} \cdot \text{D}_{\text{U}})^{4}$	$\pm (1.10^{-6} \cdot \text{U} + 5.10^{-6} \cdot \text{D}_{\text{U}})$
1 B	$(10 \pm 0.1) \text{ MOm}$	$\pm (2.5 \cdot 10^{-5} \cdot \text{U} + 6 \cdot 10^{-6} \cdot \text{D}_{\text{U}})$	$\pm (1.10^{-6} \cdot \text{U} + 1.10^{-6} \cdot \text{D}_{\text{U}})$
10 B	(10 ±0,1) MOM	$\pm (2.5 \cdot 10^{-5} \cdot \text{U} + 5 \cdot 10^{-6} \cdot \text{D}_{\text{U}})$	$\pm (1.10 \cdot 0 + 1.10 \cdot D_0)$
100 B	(10 ±0,1) МОм	$\pm (4.10^{-5} \cdot \text{U} + 6.10^{-6} \cdot \text{D}_{\text{U}})$	$\pm (6.10^{-6} \cdot \text{U} + 1.10^{-6} \cdot \text{D}_{\text{U}})$
1000 B	(10 ±0,1) MOM	$\pm (4.10 \cdot 0 + 0.10 \cdot D_0)$	$\pm (0.10 \cdot 0 + 1.10 \cdot D_0)$

¹⁾ Максимальное измеряемое значение на 20 % выше указанных верхних пределов для всех диапазонов, кроме 1000 В, для которого максимальное измеряемое значение выше на 1 %.

- 3) При температуре (23 \pm 5) °C, после времени прогрева 30 минут.
- 4) С функцией относительных измерений (Rel) после установки нуля с короткозамкнутыми наконечниками измерительных проводов.

Таблица 3 – Измерение электрического сопротивления постоянному току

Сила	Пределы допускаемой	Температурный
испытательного	абсолютной погрешности	коэффициент $(/^{\circ}C)$,
тока	2,3,4)	не более ²⁾
10 мА	$\pm (8.5 \cdot 10^{-5} \cdot R + 2 \cdot 10^{-4} \cdot D_R)$	$\pm (6.10^{-6} \cdot R + 1.10^{-5} \cdot D_R)$
10 мА	±(8.5.10 ⁻⁵ .D ± 2.10 ⁻⁵ .D)	
1 мА	$\pm (8,3.10^{\circ} \text{ K} + 2.10^{\circ} \text{ D}_{\text{R}})$	
1 мА	$\pm (7.5.10^{-5}.\text{P} \pm 6.10^{-6}.\text{P}_{-})$	$\pm (6.10^{-6} \cdot R + 1.10^{-6} \cdot D_R)$
100 мкА		$\pm (0.10^{\circ} \text{K} + 1.10^{\circ} \text{D}_{\text{R}})$
10 мкА		
10 мкА	$\pm (1.10^{-4} \cdot R + 6.10^{-6} \cdot D_R)$	
0,7 мкА	$\pm (4\cdot10^{-4}\cdot R + 1\cdot10^{-5}\cdot D_R)$	$\pm (7 \cdot 10^{-5} \cdot R + 1 \cdot 10^{-6} \cdot D_R)$
0,7 мкА	$\pm (2 \cdot 10^{-3} \cdot R + 3 \cdot 10^{-5} \cdot D_R)$	$\pm (3.85 \cdot 10^{-4} \cdot R + 1 \cdot 10^{-6} \cdot D_R)$
	испытательного тока 10 мА 10 мА 1 мА 1 мА 1 мА 100 мкА 10 мкА 10 мкА 10 мкА	испытательного тока $ \begin{array}{c} \text{абсолютной погрешности} \\ 10 \text{ мA} \\ \hline 10 \text{ мA} \\ \hline \\ 100 \text{ мA} \\ \hline \\ 100 \text{ мKA} \\ \hline \\ 100 \text{ мKA} \\ \hline \\ 10 \text{ MKA} \\ \hline \\ 10 M$

¹⁾ Максимальное измеряемое значение на 20 % выше указанных верхних пределов.

²⁾ U – значение измеряемого напряжения; D_U – верхний предел диапазона.

²⁾ R – значение измеряемого сопротивления; D_R – верхний предел диапазона.

³⁾ При температуре (23 ± 5) °C, после времени прогрева 30 минут.

⁴⁾ Значения погрешности указаны для 4-х проводной схемы с компенсацией смещения для $R \le 10$ кОм и без компенсации смещения для R > 10 кОм. Для 2-х проводной схемы с функцией относительных измерений (Rel) после установки нуля к указанным значениям погрешности следует добавить 0.1 Ом.

⁵⁾ Только 4-х проводная схема.

⁶⁾ Относительная разность сопротивлений измерительных кабелей, присоединенных к клеммам "HI", "LO", не более 10~%.

Верхний	Сопротивление	Пределы допускаемой	Температурный
предел	внутреннего шунта	абсолютной погрешности	коэффициент (/°C),
диапазона 1)	Biry rpennero mynra	2,3)	не более ²⁾
10 мкА	10 кОм	$\pm (4,5\cdot 10^{-4}\cdot I + 5\cdot 10^{-5}\cdot D_I)^{5}$	$\pm (3.10^{-5} \cdot I + 6.10^{-6} \cdot D_I)$
100 мкА	1 кОм	$\pm (4.5 \cdot 10^{-4} \cdot I + 5 \cdot 10^{-5} \cdot D_I)$	$\pm (2 \cdot 10^{-5} \cdot I + 5 \cdot 10^{-6} \cdot D_I)$
1 мА	100 Ом	$\pm (4,3.10 \cdot 1 + 3.10 \cdot D)$	$\pm (2.10 \cdot 1 + 3.10 \cdot D_1)$
10 мА	10 Ом	$\pm (2\cdot10^{-4}\cdot I + 5\cdot10^{-5}\cdot D_{I})$	$\pm (1,5\cdot10^{-5}\cdot I + 5\cdot10^{-6}\cdot D_{I})$
100 мА	1 Ом	$\pm (2^{\circ}10^{\circ}1 + 3^{\circ}10^{\circ}D_{1})$	$\pm (1,3.10^{\circ} 1 + 3.10^{\circ} D_{1})$
1 A	0,1 Ом	$\pm (4\cdot 10^{-4}\cdot I + 5\cdot 10^{-5}\cdot D_I)$	$\pm (3.10^{-5} \cdot I + 5.10^{-6} \cdot D_I)$
3 A	0,1 Ом	$\pm (5 \cdot 10^{-4} \cdot I + 4 \cdot 10^{-5} \cdot D_I)$	$\pm (3.10 \cdot 1 + 3.10 \cdot D_{\rm I})$
10 A ⁴⁾	0,005 Ом	$\pm (2,2\cdot10^{-3}\cdot I + 2,5\cdot10^{-4}\cdot D_I)$	$\pm (6.10^{-5} \cdot I + 5.10^{-6} \cdot D_I)$

¹⁾ Максимальное измеряемое значение на 20~% выше указанных верхних пределов для всех диапазонов, кроме 3~A и 10~A, для которых максимальное измеряемое значение выше на 1~%.

- 2) I значение измеряемой силы тока; D_I верхний предел диапазона.
- 3) При температуре (23 \pm 5) $^{\circ}$ С, после времени прогрева 30 минут.
- 4) Только для модели DMM6500.
- 5) При подключении к клеммам на передней панели.

Таблица 5 – Измерение среднеквадратических значений переменного напряжения

Верхние пределы диапазонов ¹⁾ : 100 мВ; 1 В; 10 В; 100 В; 750 В					
Входной импеданс: 1,1 МОм // < 100 пФ					
	Пределы Температурный				
Диапазон частот F	допускаемой абсолютной	коэффициент (/°C),			
	погрешности $^{2,3,4,5)}$ не более $^{2)}$				
$3 \Gamma_{\text{II}} \le F < 5 \Gamma_{\text{II}}$ $\pm (1 \cdot 10^{-2} \cdot \text{U} + 3 \cdot 10^{-4} \cdot \text{D}_{\text{U}})^{6}$ $\pm (1 \cdot 10^{-3} \cdot \text{U} + 3 \cdot 10^{-5} \cdot \text{D}_{\text{U}})$					
$5 \Gamma_{\mathrm{II}} \leq F < 10 \Gamma_{\mathrm{II}} \qquad \qquad \pm (3.5 \cdot 10^{-3} \cdot \mathrm{U} + 3 \cdot 10^{-4} \cdot \mathrm{D_{U}})^{6} \qquad \pm (3.5 \cdot 10^{-4} \cdot \mathrm{U} + 3 \cdot 10^{-5} \cdot \mathrm{D_{U}})^{6}$					
$10 \ \Gamma \text{u} \le F < 20 \ \text{k} \Gamma \text{u} \qquad \qquad \pm (6 \cdot 10^{-4} \cdot \text{U} + 3 \cdot 10^{-4} \cdot \text{D}_{\text{U}}) \qquad \qquad \pm (5 \cdot 10^{-5} \cdot \text{U} + 3 \cdot 10^{-5} \cdot \text{D}_{\text{U}})$		$\pm (5.10^{-5} \cdot \text{U} + 3.10^{-5} \cdot \text{D}_{\text{U}})$			
20 κΓιμ					
50 кГц ≤ F < 100 кГц	$\pm (6.10^{-3} \cdot \text{U} + 8.10^{-4} \cdot \text{D}_{\text{U}})$	$\pm (6.10^{-4} \cdot \text{U} + 8.10^{-4} \cdot \text{D}_{\text{U}})$			
$100 \ \kappa\Gamma$ ц $\leq F \leq 300 \ \kappa\Gamma$ ц	$\pm (4\cdot10^{-2}\cdot\text{U} + 5\cdot10^{-3}\cdot\text{D}_{\text{U}})^{6}$	$\pm (2 \cdot 10^{-3} \cdot \text{U} + 2 \cdot 10^{-4} \cdot \text{D}_{\text{U}})$			

¹⁾ Максимальное измеряемое значение на 20 % выше указанных верхних пределов для всех диапазонов, кроме 750 В, для которого максимальное измеряемое значение равно 750 В.

²⁾ U – значение измеряемого напряжения; D_U – верхний предел диапазона.

³⁾ При температуре (23 \pm 5) °C, после времени прогрева 30 минут.

⁴⁾ Погрешность нормируется для значений измеряемого напряжения не менее 5 % от верхнего предела диапазона.

⁵⁾ Погрешность нормируется для значений напряжения U и частоты F, удовлетворяющих условию $U \cdot F \le 8 \cdot 10^7 \ B \cdot \Gamma$ ц.

⁶⁾ Типовое справочное значение.

Таблица 6 – Измерение среднеквадратических значений силы переменного тока

таолица о – измерение среднеквадратических значении силы переменного тока				
Верхний	Сопротивление	Диапазон	Пределы	Температурный
предел	внутреннего	частот F	допускаемой абсолютной	
диапазона 1)	шунта	4401011	погрешности 2,3,4)	не более ²⁾
100 мкА	1 кОм	3Γ ц \leq $F \leq$ 1 к Γ ц	$\pm (1\cdot10^{-3}\cdot I + 7\cdot10^{-4}\cdot D_I)^{6}$	$\pm (1,5\cdot10^4\cdot I + 1\cdot10^4\cdot D_I)$
100 MKA	1 KOM	$1 \ \kappa\Gamma$ ц $<$ $F \le 10 \ \kappa\Gamma$ ц	$\pm (1,5\cdot10^{-3}\cdot I + 7\cdot10^{-4}\cdot D_I)^{6,7)}$	$\pm (3.10^4 \cdot I + 1.10^4 \cdot D_I)$
1 мА	100 Ом	3Γ ц \leq F \leq 5 к Γ ц	$\pm (1.10^{-3} \cdot I + 4.10^{-4} \cdot D_I)$	$\pm (1,5\cdot10^{-4}\cdot I + 6\cdot10^{-5}\cdot D_I)$
1 MA	100 OM	$5 к \Gamma$ ц $<$ $F \le 10 к \Gamma$ ц	$\pm (1.10^{-3} \cdot I + 4.10^{-4} \cdot D_I)^{7}$	$\pm (3.10^{-4} \cdot I + 6.10^{-5} \cdot D_I)$
10 мА	10 Ом	3Γ ц \leq $F \leq$ 5 к Γ ц	$\pm (1.10^{-3} \cdot I + 4.10^{-4} \cdot D_I)$	$\pm (1,5\cdot10^{-4}\cdot I + 6\cdot10^{-5}\cdot D_I)$
10 MA	10 OM	$5 к \Gamma$ ц $<$ $F \le 10 к \Gamma$ ц	$\pm (1.10^{-3} \cdot I + 4.10^{-4} \cdot D_I)^{7}$	$\pm (3.10^{-4} \cdot I + 6.10^{-5} \cdot D_I)$
100 мА	1 Ом	3Γ ц \leq $F \leq$ 5 к Γ ц	$\pm (1.10^{-3} \cdot I + 4.10^{-4} \cdot D_I)$	$\pm (1,5\cdot10^{-4}\cdot I + 6\cdot10^{-5}\cdot D_I)$
100 MA	1 OM	$5 к \Gamma$ ц $<$ $F \le 10 к \Gamma$ ц	$\pm (1.10^{-3} \cdot I + 4.10^{-4} \cdot D_I)^{7}$	$\pm (3.10^{-4} \cdot I + 6.10^{-5} \cdot D_I)$
		3 Гц≤F<5 Гц	$\pm (3.10^{-3} \cdot I + 4.10^{-4} \cdot D_I)$	
1 A	0,1 Ом	5Γ ц \leq $F \leq$ 5 к Γ ц	$\pm (1 \cdot 10^{-3} \cdot I + 4 \cdot 10^{-4} \cdot D_I)$	$\pm (1,5\cdot10^{-4}\cdot I + 6\cdot10^{-5}\cdot D_I)$
		$5 к \Gamma$ ц $<$ $F \le 10 к \Gamma$ ц	$\pm (1,5\cdot10^{-3}\cdot I + 6\cdot10^{-4}\cdot D_I)^{7}$	$\pm (3.10^{-4} \cdot I + 6.10^{-5} \cdot D_I)$
		3 Гц≤F<5 Гц	$\pm (3.5 \cdot 10^{-3} \cdot I + 4 \cdot 10^{-4} \cdot D_I)$	
3 A	0,1 Ом	5Γ ц \leq $F \leq$ 5 к Γ ц	$\pm (1.5 \cdot 10^{-3} \cdot I + 4 \cdot 10^{-4} \cdot D_I)$	$\pm (1,5\cdot10^{-4}\cdot I + 6\cdot10^{-5}\cdot D_I)$
		5 кГц < F ≤ 10 кГц	$\pm (1,5\cdot10^{-3}\cdot I + 6\cdot10^{-4}\cdot D_I)^{7}$	$\pm (3.10^{-4} \cdot I + 6.10^{-5} \cdot D_I)$
		3 Гц≤F<5 Гц	$\pm (6.10^{-3} \cdot I + 6.10^{-4} \cdot D_I)$	$\pm (1,5\cdot10^{-4}\cdot I + 6\cdot10^{-5}\cdot D_I)$
10 A ⁵⁾	0.005.0	5 Гц≤F≤1 кГц	$\pm (4\cdot10^{-3}\cdot I + 6\cdot10^{-4}\cdot D_I)$	$\pm (1,5\cdot10^{-4}\cdot I + 6\cdot10^{-5}\cdot D_I)$
10 A	0,005 Ом	1 кГц≤ F ≤ 5 кГц	$\pm (1.10^{-2} \cdot I + 7.10^{-4} \cdot D_I)$	$\pm (3.10^{-4} \cdot I + 1.2.10^{-4} \cdot D_I)$
		5 кГц < F ≤ 10 кГц	$\pm (1.10^{-2} \cdot I + 7.10^{-4} \cdot D_I)^{7}$	$\pm (3.10^{-4} \cdot I + 1.2.10^{-4} \cdot D_I)$

¹⁾ Максимальное измеряемое значение на 20 % выше указанных верхних пределов для всех диапазонов, кроме 3 A и 10 A, для которых максимальное измеряемое значение выше на 1 %.

Таблица 7 – Измерение электрической емкости

Верхний		Пределы допускаемой	Температурный
предел	Сила тока заряда	абсолютной погрешности	коэффициент $(/^{\circ}C)$,
диапазона 1)		2,3,4)	не более ²⁾
1 нФ	1 мкА	$\pm (8.10^{-3} \cdot \text{C} + 5.10^{-3} \cdot \text{D}_{\text{C}})$	$\pm (5.10^{-4} \cdot \text{C} + 5.10^{-4} \cdot \text{D}_{\text{C}})$
10 нФ	10 мкА		
100 нФ	100 мкА		
1 мкФ	100 мкА	$\pm (4.10^{-3} \cdot \text{C} + 1.10^{-3} \cdot \text{D}_{\text{C}})$	$\pm (5.10^{-4} \cdot \text{C} + 1.10^{-4} \cdot \text{D}_{\text{C}})$
10 мкФ	1 мА		
100 мкФ	1 мА		

¹⁾ Максимальное измеряемое значение на 20 % выше указанных верхних пределов.

²⁾ I – значение измеряемой силы тока; D_I – верхний предел диапазона.

³⁾ При температуре (23 ±5) °C, после времени прогрева 30 минут.

⁴⁾ Погрешность нормируется для значений измеряемой силы тока не менее 5 % от верхнего предела диапазона.

⁵⁾ Только для модели DMM6500.

⁶⁾ При подключении к клеммам на передней панели.

⁷⁾ Типовое справочное значение.

²⁾ С – значение измеряемой емкости; D_С – верхний предел диапазона.

³⁾ При температуре (23 ± 5) °C, после времени прогрева 30 минут.

⁴⁾ С функцией относительных измерений (Rel) после установки нуля.

Таблица 8 – Измерение частоты и периода

Измеряемые значения		Пределы допускаемой относительной	Температурный коэффициент (%/°C),
Частота F	Период Т	погрешности, %	не более
	Синусоидальный сигнал 1)		
3 Гц≤ F ≤ 10 Гц	333 мс \geq Т \geq 100 мс	±0,1	
10Γ ц $<$ F \leq 100Γ ц	$100 \ { m mc} > { m T} \ge 10 \ { m mc}$	± 0.03	±0,0002
100 Гц < F ≤ 1 кГц	$10 \text{ mc} > T \ge 1 \text{ mc}$	±0,01	
1 кГц < F ≤ 300 кГц	1 мс $>$ T \ge 3,3 мкс	±0,009	
Прямоугольный сигнал ²⁾			
10Γ ц $<$ F \leq 300 к Γ ц	$100 \ \text{мc} > T \ge 3,3 \ \text{мкc}$	$\pm 0,008$	±0,0002

¹⁾ Погрешность нормируется при уровне входного напряжения (скз) не менее 5 % от верхнего предела диапазона напряжения и не менее 10 мВ.

Таблица 9 – Измерение напряжения высокоскоростным АЦП

Верхний предел диапазона ¹⁾	Входное сопротивление	Пределы допускаемой абсолютной погрешности измерения постоянного напряжения ^{2,3)}	Температурный коэффициент (/°C), не более ²⁾
100 мВ	>10 ГОм	$\pm (4.10^{-4} \cdot \text{U} + 2.10^{-4} \cdot \text{D}_{\text{U}})$	$\pm (2.5 \cdot 10^{-5} \cdot \text{U} + 3 \cdot 10^{-5} \cdot \text{D}_{\text{U}})$
1 B; 10 B	$(10 \pm 0,1) \text{ MOm}$	$\pm (3.10^{-4} \cdot \text{U} + 1.10^{-4} \cdot \text{D}_{\text{U}})$	$\pm (2.5 \cdot 10^{-5} \cdot \text{U} + 1 \cdot 10^{-5} \cdot \text{D}_{\text{U}})$
100 B; 1000 B	(10 ±0,1) МОм	$\pm (3.10^{\circ} \cdot 0 + 1.10^{\circ} \cdot D_{0})$	$\pm (2,3.10^{-10} + 1.10^{-1}D_{\rm U})$

¹⁾ Максимальное измеряемое значение на $20\,\%$ выше указанных верхних пределов для всех диапазонов, кроме $1000\,\mathrm{B}$, для которого максимальное измеряемое значение выше на $1\,\%$.

Таблица 10 – Измерение силы тока высокоскоростным АЦП

Верхний предел диапазона 1)	Сопротивление внутреннего шунта	Пределы допускаемой абсолютной погрешности измерения силы постоянного тока 2,3)	Температурный коэффициент (/°C), не более ²⁾
100 мкА	1 кОм	$\pm (7.10^{-4} \cdot I + 5.10^{-4} \cdot D_I)$	
1 мА	100 Ом	$\pm (7.10^{-4} \cdot I + 3.10^{-4} \cdot D_I)$	$\pm (3.10^{-5} \cdot I + 3.5.10^{-5} \cdot D_I)$
10 мА	10 Ом	$\pm (5.10^{-4} \cdot I + 3.10^{-4} \cdot D_I)$	
100 мА	1 Ом	, , ,	$\pm (2\cdot 10^{-5}\cdot I + 3.5\cdot 10^{-5}\cdot D_I)$
1 A	0,1 Ом	$\pm (7.10^{-4} \cdot I + 3.10^{-4} \cdot D_I)$	$\pm (4.10^{-5} \cdot I + 3.5.10^{-5} \cdot D_I)$
3 A	0,1 Ом	$\pm (9.10^{-4} \cdot I + 4.10^{-4} \cdot D_I)$	
10 A ⁴⁾	0,005 Ом	$\pm (2.5 \cdot 10^{-3} \cdot I + 8 \cdot 10^{-4} \cdot D_I)$	$\pm (6.10^{-5} \cdot I + 1.10^{-4} \cdot D_I)$

¹⁾ Максимальное измеряемое значение на $20\,\%$ выше указанных верхних пределов для всех диапазонов, кроме 3 A и 10 A, для которых максимальное измеряемое значение выше на $1\,\%$.

²⁾ Погрешность нормируется при амплитуде входного напряжения не менее 10 % от верхнего предела диапазона напряжения.

²⁾ U – значение измеряемого напряжения; D_U – верхний предел диапазона.

³⁾ Частота дискретизации 1 кГц, цифровой фильтр с усреднением 100 отсчетов.

²⁾ І – значение измеряемой силы тока; D_I – верхний предел диапазона.

³⁾ Частота дискретизации 1 кГц, цифровой фильтр с усреднением 100 отсчетов.

Таблица 11 – Основные технические характеристики

Facanymy va naavany (Saa nyyyy)	ширина	глубина	высота	
Габаритные размеры (без ручки), мм	214	357	88	
Масса, кг, не более	Масса, кг, не более 4,54			
Напряжение сети питания, В	от 90 до 26	от 90 до 264		
Частота сети питания, Гц	50; 400			
Потребляемая мощность, Вт, не более	DMM6500		AQ6510	
Потреоляемая мощность, вт, не облее	50 65		65	
Рабочие условия применения				
температура окружающего воздуха, °С от 0 до 50				
относительная влажность воздуха, % до 80 при температуре 35 °C			35 °C	

Знак утверждения типа

наносится на лицевую панель корпуса мультиметров в виде наклейки и на титульный лист руководства по эксплуатации типографским способом.

Комплектность средства измерений

представлена в таблице 12.

Таблица 12 – Комплектность мультиметров

Наименование и обозначение	Кол-во
Мультиметр Keithley DMM6500 / Keithley DAQ6510	1 шт.
Кабель сетевой тип А1	1 шт.
Пара измерительных кабелей	1 шт.
Кабель интерфейсный USB A/B	1 шт.
Коммуникационные платы KTTI-RS232, KTTI-GPIB, KTTI-TSP	по заказу
Модули мультиплексора (для DMM6500)	по заказу
Модули коммутации (для DAQ6510)	по заказу
Руководство по эксплуатации	1 шт.
Методика поверки KI6500/МП-2018	1 шт.

Поверка

осуществляется по документу KI6500/МП-2018 «ГСИ. Мультиметры Keithley DMM6500, Keithley DAQ6510. Методика поверки», утвержденному ЗАО «АКТИ-Мастер» 30.12.2018 г.

Основные средства поверки:

- калибратор многофункциональный Fluke 5730A с усилителем Fluke 5725A; регистрационный номер 60407-15;
 - мультиметр Agilent 3458A; регистрационный номер 25900-03;
- меры электрического сопротивления универсальные однозначные MC 3080M номиналами 1; $10~\Omega$ с классом точности 0,001; регистрационный номер 61295-15;
- генератор сигналов произвольной формы Tektronix AFG3021C; регистрационный номер 53102-13;
 - магазин емкости Р5025; регистрационный номер 5395-76.

Допускается применение аналогичных средств поверки, обеспечивающих определение метрологических характеристик поверяемых средств измерений с требуемой точностью.

Знак поверки наносится лицевую панель корпуса мультиметров в виде наклейки (место нанесения показано на рисунке 1) и/или на свидетельство о поверке.

Сведения о методиках (методах) измерений

приведены в эксплуатационном документе.

Нормативные документы, устанавливающие требования к мультиметрам Keithley DMM6500, Keithley DAQ6510

ГОСТ 8.027-2001. ГСИ. Государственная поверочная схема для средств измерений постоянного электрического напряжения и электродвижущей силы

ГОСТ Р 8.648-2015. ГСИ. Государственная поверочная схема для средств измерений переменного электрического напряжения до $1000~\rm B$ в диапазоне частот от $1\cdot 10^{-2}$ до $2\cdot 10^9~\rm \Gamma ц$

ГОСТ 8.022-91. ГСИ. Государственный эталон и государственная поверочная схема для средств измерений силы постоянного электрического тока в диапазоне $1\cdot 10^{-16} \div 30~\mathrm{A}$

ГСИ. Государственная поверочная схема для средств измерений электрического сопротивления (приказ Росстандарта от 15.02.2016 г. № 146)

ГСИ. Государственная поверочная схема для средств измерений силы переменного электрического тока от $1\cdot10^{-8}$ до 100 A в диапазоне частот от $1\cdot10^{-1}$ до $1\cdot10^{6}$ Гц (приказ Росстандарта от 14.05.2016 г. № 575)

ГСИ. Государственная поверочная схема для средств измерений времени и частоты (приказ Росстандарта от 31.07.2018 г. № 1621)

ГОСТ 8.371-80. ГСИ. Государственный первичный эталон и общесоюзная поверочная схема для средств измерений электрической емкости

Изготовитель

Компания "Tektronix (China) Co., Ltd.", Китай

Адрес:1227 Chuan Qiao Road, Pudong New Area, Shanghai 201206, P.R.C

Тел.: (8621)38960893, факс: (8621)58993156

E-mail: moscow@tektronix.com

Заявитель

Общество с ограниченной ответственностью «Мастер-Тул» (ООО «Мастер-Тул»)

Адрес: 127106, г. Москва, Нововладыкинский проезд, д. 8, стр. 4, офис 315

Тел./факс (495)926-71-85

Web-сайт: http://www.master-tool.ru

E-mail: info@master-tool.ru

Испытательный центр

Закрытое акционерное общество «АКТИ-Мастер» (ЗАО «АКТИ-Мастер»)

Адрес: 127254, г. Москва, Огородный проезд, д. 5, стр. 5

Тел./факс: (495)926-71-85

Web-сайт: http://www.actimaster.ru

E-mail post@actimaster.ru

Аттестат аккредитации ЗАО «АКТИ-Мастер» по проведению испытаний средств измерений в целях утверждения типа № RA.RU.311824 от 14.10.2016 г.

Заместитель			
Руководителя Федерального			
агентства по техническому			
регулированию и метрологии			А.В. Кулешов
	М.п.	« »	2019 г.